Nutraceutical-mediated restoration of wild-type levels of IKBKAP-encoded IKAP protein in familial dysautonomia-derived cells.
نویسندگان
چکیده
SCOPE The reported ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD)-causing mutation in the IKBKAP gene prompted an evaluation of the impact of commonly consumed nutraceuticals on the splicing of this transcript. METHODS AND RESULTS Screening efforts revealed the ability of the isoflavones, genistein, and daidzein, to impact splicing and increase the production of the wild-type, exon-20-containing, transcript, and the full-length IKBKAP-encoded IΚB kinase complex associated protein(IKAP) in FD-derived cells. Genistein was also found to impact splicing in neuronal cells, a cell type profoundly impacted by FD. The simultaneous exposure of FD-derived cells to genistein and epigallocatechin gallate (EGCG) resulted in the almost exclusive production of the exon-20-containing transcript and the production of wild-type amounts of IKAP protein. CONCLUSION This study represents the first demonstration that the isoflavones, genistein and daidzein, possess splice-altering capabilities and that simultaneous treatment with genistein and EGCG reverses the splice-altering impact of the FD-causing mutation. These findings support the clinical evaluation of the therapeutic impact of the combined administration of these two commonly consumed nutraceuticals on this patient population and suggest a broader evaluation of the impact of these nutraceuticals on the in vivo RNA splicing process.
منابع مشابه
Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP leve...
متن کاملPhosphatidylserine Increases IKBKAP Levels in Familial Dysautonomia Cells
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a ...
متن کاملIKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration.
Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects c...
متن کاملInvolvement of IKAP in Peripheral Target Innervation and in Specific JNK and NGF Signaling in Developing PNS Neurons
A splicing mutation in the ikbkap gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we attempted to elucidate the role of IKAP in PNS development in the chick embryo and found that IKAP is required for proper axonal outgrowth, branching, and peripheral target innervation. Moreover...
متن کاملEffects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia
Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular nutrition & food research
دوره 56 4 شماره
صفحات -
تاریخ انتشار 2012